Summertime Extreme Heat Events and Hospitalizations for Acute Myocardial Infarction in Maryland: 2002-2012

Jared Fisher, MPH
PhD Candidate
Department of Epidemiology and Biostatistics
University of Maryland

09/01/2015

Acknowledgements

Coauthors

University of Maryland

- Dr. Amir Sapkota
- Dr. Robin Puett
- Dr. Chengsheng Jiang
- Crystal R. Upperman
- Dr. Raghu Murtugudde

Maryland Department of Health and Mental Hygiene

Dr. Clifford Mitchell

Financial support:

CDC's Climate-Ready States and Cities program.

Conflict of Interest:

None

Background

- Previous studies have shown associations between cardiovascular risk and ambient temperature
 - Many focused on CVD mortality
- Existing studies on temperature and non-fatal acute myocardial infarction (AMI)
 - Consistently higher risk from cold
 - Inconsistent on effect from heat
 - Few studies exploring population subgroups

Background

- Inconsistency may partially be explained by differing methodologies used to classify temperature
 - Linear
 - Non-linear (splines)
 - Threshold
 - Season
- Important to consider temperature norms and local adaptability
- For this study, we used Extreme Heat Events, built using location and calendar day specific climatology, as exposure metric

Defining Extreme Heat Events

- Baseline data from met stations: 1960-1989
- Extreme Temperature Thresholds:
 - County and calendar day specific distribution of Tmax for 30 yrs with 31 day window center on each calendar day.
 - 95th percentile of this distribution identified as Extreme Temp Threshold (ETT₉₅)
 - ETT₉₅ values specific to a calendar day and county
- Extreme Heat Events during 2002-2012: dichotomous variable
 - 1: if Tmax for a given calendar day > (ETT₉₅)
 - 0: Otherwise

Extreme Heat Threshold

Threshold used to define extreme heat varies by county and by day

Example: ETT95 values on July 15th (Range: 30-36 C)

Study Population

- All Maryland hospitalizations
 - Principal discharge diagnosis of AMI (ICD-9 410)
 - Admission date in June August from 2000 to 2012
- Additional variables
 - County of residence
 - Age
 - Gender
 - Race/ethnicity
- N= 32,670 hospitalizations

Statistical Analysis

- Time-stratified case-crossover study design
 - Case period: day of hospitalization (Lag0)
 - Control periods: 3 days (7, 14, 21 days before/after)
- Conditional logistic regression
- Lag periods: 1 day (Lag1) and 3 day cumulative (Lag0_2)
- Stratified models:
 - Age categories: 18-64 years and >=65 years
 - Gender (also by age cat)
 - Non-Hispanic White, Non-Hispanic Black (also by age cat)
- Sensitivity analyses
 - Controlling for PM_{2.5} (2003-11)
 - Different threshold to define extreme events (ETT₉₀)

Demographic Characteristics

Characteristic	# Cases	% of
Characteristic		Cases
Age Category		
18-64	14,067	43.1
65+	18,603	56.9
Gender		
Female	13,948	42.7
Male	18,722	57.3
Race / Ethnicity		
Non-Hispanic Whites	22,343	68.4
Non-Hispanic Blacks	6,730	20.6
Hispanic	416	1.3
Other Races	1,413	4.3
Unreported	1,768	5.4

Odds ratios and 95% confidence intervals (CIs) for exposures to extreme heat (ETT95 exceedance) and AMI during summer months in Maryland, 2000-2012

		Extreme Heat Event		
Characteristic	Cases	Lag0	Lag1	Lag0_2
Overall Model	32,670	1.11 (1.05 – 1.17)	1.16 (1.09 – 1.22)	1.17 (1.12 – 1.22)
Gender				
Male	18,722	1.12 (1.05 – 1.21)	1.19 (1.11 – 1.28)	1.18 (1.12 – 1.24)
Female	13,948	1.09 (1.00 – 1.19)	1.10 (1.01 – 1.20)	1.16 (1.09 – 1.23)
Age				
Age 18-64	14,067	1.10 (1.02 – 1.20)	1.15 (1.06 – 1.25)	1.16 (1.09 – 1.23)
Age >=65	18,603	1.11 (1.04 – 1.20)	1.16 (1.08 – 1.25)	1.18 (1.12 – 1.24)
Race				
Non-Hispanic White	22,343	1.09 (1.02 – 1.16)	1.16 (1.09 – 1.24)	1.18 (1.12 – 1.23)
Non-Hispanic Black	6,730	1.27 (1.12 – 1.44)	1.15 (1.02 – 1.30)	1.21 (1.10 – 1.33)

Odds ratios and 95% confidence intervals (CIs) for exposures to extreme heat (ETT95 exceedance) and AMI during summer months in Maryland, 2000-2012

		Extreme Heat Event		
Characteristic	Cases	Lag0	Lag1	Lag0_2
Non-Hispanic White				
Age 18-64	8,697	1.01 (0.91 – 1.13)	1.13 (1.01 – 1.25)	1.13 (1.05 – 1.23)
Age 65+	13,646	1.14 (1.05 – 1.24)	1.18 (1.09 – 1.29)	1.20 (1.13 – 1.28)
Non-Hispanic Black				
Age 18-64	3,616	1.37 (1.16 – 1.62)	1.20 (1.02 – 1.42)	1.24 (1.10 – 1.41)
Age 65+	3,113	1.16 (0.96 – 1.40)	1.09 (0.90 – 1.32)	1.17 (1.02 – 1.35)
Male				
Age 18-64	9,734	1.14 (1.04 – 1.26)	1.17 (1.06 – 1.29)	1.18 (1.09 – 1.27)
Age 65+	8,988	1.10 (0.99 – 1.22)	1.23 (1.11 – 1.36)	1.18 (1.09 – 1.27)
Female				
Age 18-64	4,333	1.02 (0.87 – 1.19)	1.10 (0.95 – 1.28)	1.11 (0.99 – 1.25)
Age 65+	9,615	1.13 (1.02 – 1.24)	1.10 (1.00 – 1.22)	1.18 (1.09 – 1.27)

Strengths and Limitations

- Results generally consistent in sensitivity analyses
- High number of cases
- Extreme heat metric may account for local and time-specific temperature adaptability

- Hospitalization data
 - Unable to distinguish between recurrent hospitalizations
 - Information on onset limited to date of hospitalization
- Measures of relative humidity unavailable for this initial study

Conclusion

 Our findings suggest that exposure to extreme heat events increase the risk of AMI

 Additional studies are needed to understand the differential susceptibility across demographic subgroups